Acta Crystallographica Section A

Foundations of
 Crystallography

ISSN 0108-7673

Received 29 December 2011
Accepted 27 February 2012

Patterson function and δ recycling: derivation of the phasing equations

Jordi Rius

Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193-Bellaterra, Catalonia, Spain. Correspondence e-mail: jordi.rius@icmab.es

Two phasing equations based on the Fourier syntheses $\delta_{\mathrm{P}}=T^{-1}\left[\left(E^{2}-\right.\right.$ $\left.\left.\left\langle E^{2}\right\rangle\right) \exp (i \varphi)\right]$ and $\delta_{\mathrm{M}}=T^{-1}[(E-\langle E\rangle) \exp (i \varphi)]$ were recently described [Rius (2012). Acta Cryst. A68, 77-81] (E is the quasi-normalized structure factor and $\langle E\rangle$ is the average over all reflections). These equations were found by comparison with the direct methods origin-free modulus sum function and constitute the core of the ' δ recycling' phasing procedure. The derivation of these phasing equations from the minimization of a residual $\left(R_{\mathrm{P}}\right)$ between two differently calculated density functions (one of them including the positivity constraint) is shown.
(C) 2012 International Union of Crystallography

Printed in Singapore - all rights reserved

2. The $\boldsymbol{R}_{\mathbf{P}}$ residual and the $\delta_{\mathbf{P}}\left(\delta_{\mathrm{M}}\right)$ phasing formula

If $\rho(\mathbf{r})$ represents a positive definite density function of the crystal, e.g. the electron density or even the electrostatic potential (for structure-determination purposes), let us assume that the condition

$$
\begin{equation*}
\rho(\mathbf{r}, \Phi)=\rho_{\mathrm{P}}(\mathbf{r}, \Phi)=\rho(\mathbf{r}), \quad \forall \mathbf{r} \in V \tag{5}
\end{equation*}
$$

is only fulfilled for the true Φ 's. The discrepancy between $\rho(\Phi)$ and $\rho_{\mathrm{P}}(\Phi)$ can be measured through the residual

$$
\begin{equation*}
R_{\mathrm{P}}(\Phi)=\int_{V}\left[\rho(\mathbf{r}, \Phi)-\rho_{\mathrm{P}}(\mathbf{r}, \Phi)\right]^{2} \mathrm{~d} \mathbf{r} \tag{6}
\end{equation*}
$$

extended over the whole unit cell of V volume. To find the set of phases minimizing R_{P}, the above integral must be simplified. By omitting the \mathbf{r} and Φ symbols in the integrand, it follows

$$
\begin{align*}
R_{\mathrm{P}}(\Phi) & =\int_{V}\left(\rho-\rho_{\mathrm{P}}\right)^{2} \mathrm{~d} V=\int_{V}\left(\rho-\frac{\delta_{\mathrm{P}} m}{\langle E\rangle}\right)^{2} \mathrm{~d} V \\
& =\int_{V} \rho^{2} \mathrm{~d} V-\frac{1}{\langle E\rangle^{2}} \int_{V}\left(2 \rho\langle E\rangle \delta_{\mathrm{P}} m-\delta_{\mathrm{P}}^{2} m^{2}\right) \mathrm{d} V=I_{\mathrm{C}}-I_{\mathrm{P}} \tag{7}
\end{align*}
$$

Integral I_{C} corresponds to the value of the Patterson function at the origin, i.e. it is equal to $1 / V \sum_{\mathbf{H}} E_{\mathbf{H}}{ }^{2}$ and hence is phase independent. In integral I_{P}, the squared mask m^{2} (which is made of zeros and ones) is equal to m. In view of this property and after replacing $\delta_{\mathrm{P}} m$ by $\delta_{\mathrm{P}, \Delta}$, integral I_{P} becomes

$$
\begin{equation*}
I_{\mathrm{P}}=\frac{1}{\langle E\rangle^{2}} \int_{V}\left(2\langle E\rangle \rho-\delta_{\mathrm{P}}\right) \delta_{\mathrm{P}, \Delta} \mathrm{~d} V \tag{8}
\end{equation*}
$$

The physical meaning of the quantity inside the parentheses can best be understood by taking into account equation (19), $\delta_{\mathrm{P}}=k \delta_{\mathrm{M}}$, and by considering the definition of δ_{M}, i.e. $\delta_{\mathrm{M}}=\rho-\langle E\rangle \rho_{\varphi}$. The quantity inside the parentheses then becomes

Figure 1
Plot of the linear dependence of X upon E for $P 1$ (upper line) and $P \overline{1}$ (lower line).

$$
\begin{align*}
2\langle E\rangle \rho-\delta_{\mathrm{P}} & =2\langle E\rangle \rho-k \delta_{\mathrm{M}} \\
& =k\left[\langle E\rangle \rho_{\varphi}-\left(1-\frac{2\langle E\rangle}{k}\right) \rho\right] \\
& =k \rho_{X} \tag{9}
\end{align*}
$$

where ρ_{X} (like ρ and the phase synthesis ρ_{φ}) is a density function with the strongest peaks at the atomic positions. The Fourier coefficients of ρ_{X} are given by

$$
\begin{equation*}
\mathbf{X}_{\mathbf{H}}=\left[\langle E\rangle-\left(1-\frac{2\langle E\rangle}{k}\right) E_{\mathbf{H}}\right] \exp i \varphi_{\mathbf{H}} . \tag{10}
\end{equation*}
$$

Replacement of ($2\langle E\rangle \rho-\delta_{\mathrm{P}}$) by $k \rho_{X}$ in equation (8) yields

$$
\begin{equation*}
I_{\mathrm{P}}=\frac{k}{\langle E\rangle^{2}} \int_{V} \rho_{X} \delta_{\mathrm{P}, \Delta} \mathrm{~d} V \tag{11}
\end{equation*}
$$

By introducing ρ_{X} in the form of a Fourier synthesis in equation (11),

$$
\begin{align*}
I_{\mathrm{P}}(\Phi)= & \frac{k}{\langle E\rangle^{2} V} \sum_{\mathbf{H}}\left[X_{-\mathbf{H}} \exp \left(i \varphi_{-\mathbf{H}}\right) \int_{V} \delta_{\mathrm{P}, \Delta}(\mathbf{r}, \Phi)\right. \\
& \times \exp (i 2 \pi \mathbf{H r}) \mathrm{d} \mathbf{r}] . \tag{12}
\end{align*}
$$

Subsequent substitution of the complex integral (i.e. the \mathbf{H} Fourier transform of $\delta_{\mathrm{P}, \Delta}$) by $A_{\mathbf{H}}+i B_{\mathbf{H}}$, under consideration that in the sum there is a $-\mathbf{H}$ reflection for each \mathbf{H} one (both with opposite phase values), leads to

$$
\begin{equation*}
I_{\mathrm{P}}(\Phi)=\frac{2 k}{\langle E\rangle^{2} V} \sum_{\mathbf{H}}^{\prime} X_{\mathbf{H}}\left[\cos \varphi_{\mathbf{H}} A_{\mathbf{H}}(\Phi)+\sin \varphi_{\mathbf{H}} B_{\mathbf{H}}(\Phi)\right] \tag{13}
\end{equation*}
$$

where the prime above the summation symbol indicates that the sum only extends over one hemisphere of reciprocal space.

The necessary condition for an extremum of R_{P} is

$$
\begin{equation*}
\partial R_{\mathrm{P}} / \partial \varphi_{\mathbf{H}}=0 \tag{14}
\end{equation*}
$$

for every \mathbf{H}. Since $R_{\mathrm{P}}=I_{\mathrm{C}}-I_{\mathrm{P}}$, and I_{C} is phase independent, equation (14) is equivalent to

$$
\begin{equation*}
\frac{\partial I_{\mathrm{P}}}{\partial \varphi_{\mathbf{H}}}=\frac{2 k X_{\mathbf{H}}}{\langle E\rangle^{2} V}\left[-\sin \varphi_{\mathbf{H}} A_{\mathbf{H}}(\Phi)+\cos \varphi_{\mathbf{H}} B_{\mathbf{H}}(\Phi)\right]=0 \tag{15}
\end{equation*}
$$

Finally, this may be rearranged to give the δ_{P} phasing formula of R_{P}

$$
\begin{equation*}
\tan \varphi_{\mathbf{H}}^{\mathrm{new}}=\frac{B_{\mathbf{H}}(\Phi)}{A_{\mathbf{H}}(\Phi)}, \tag{16}
\end{equation*}
$$

which corresponds to equation (4) but is now expressed as a tangent formula. Closely related to this tangent formula is the δ_{M} phasing formula

$$
\begin{equation*}
\varphi_{\mathbf{H}}^{\text {new }}=\text { phase of }\left\{\int_{V} \delta_{\mathrm{M}, \Delta}(\mathbf{r}, \Phi) \exp (i 2 \pi \mathbf{H r}) \mathrm{d} V\right\} \tag{17}
\end{equation*}
$$

which results from replacing $\delta_{\mathrm{P}, \Delta}$ by $k \delta_{\mathrm{M}, \Delta}$ in equation (11) and then by proceeding in parallel to the δ_{P} case.

The linear dependence of X upon E is plotted for $P 1$ and $P \overline{1}$ in Fig. 1. For both, the presence of X causes a decrease in the relative weight of the strong reflections in integral I_{P}. For the $P 1$ case, the negative slope is low. For $P \overline{1}$, the negative slope is higher but here the proportion of weak E values is also much higher than for $P 1$.

APPENDIX A
 Relationship between δ_{P} and $\boldsymbol{\delta}_{\mathrm{M}}$

It is known that the modulus function M is a Patterson-type function. The principal difference between M and the Patterson function P lies in the relative heights between the origin and non-origin peaks. If the respective origin peaks are removed, the resulting M^{\prime} and P^{\prime} functions will be essentially proportional, i.e. $\mathrm{P}^{\prime}=k \mathrm{M}^{\prime}$. Since δ_{P} is defined by

$$
\begin{equation*}
\delta_{\mathrm{P}}(\mathbf{r})=\int_{V} \rho_{\varphi}(\mathbf{u}) \mathrm{P}^{\prime}(\mathbf{r}-\mathbf{u}) \mathrm{d} \mathbf{u}, \tag{18}
\end{equation*}
$$

substitution of P^{\prime} by $k \mathrm{M}^{\prime}$ in this integral leads to

$$
\begin{equation*}
\delta_{\mathrm{P}}=k \delta_{\mathrm{M}}, \tag{19}
\end{equation*}
$$

i.e. δ_{P} and δ_{M} are also proportional. The best k value should correspond to the minimum of

$$
\begin{equation*}
R(k)=V \int_{V}\left(\mathrm{P}^{\prime}-k \mathrm{M}^{\prime}\right)^{2} \mathrm{~d} V \tag{20}
\end{equation*}
$$

which, by applying the Fourier theory, is equivalent to

$$
\begin{equation*}
R(k)=\sum_{\mathbf{H}}\left[\left(E_{\mathbf{H}}^{2}-\left\langle E^{2}\right\rangle\right)-k\left(E_{\mathbf{H}}-\langle E\rangle\right)\right]^{2} . \tag{21}
\end{equation*}
$$

It is straightforward to show that the least-squares estimate of k is

$$
\begin{equation*}
k=\frac{\sum_{\mathbf{H}}\left(E_{\mathbf{H}}^{2}-\left\langle E^{2}\right\rangle\right)\left(E_{\mathbf{H}}-\langle E\rangle\right)}{\sum_{\mathbf{H}}\left(E_{\mathbf{H}}-\langle E\rangle\right)^{2}} \tag{22}
\end{equation*}
$$

and, after some algebraic manipulation, it simplifies to

$$
\begin{equation*}
k=\frac{\left\langle E^{3}\right\rangle-\langle E\rangle\left\langle E^{2}\right\rangle}{\left\langle E^{2}\right\rangle-\langle E\rangle^{2}} . \tag{23}
\end{equation*}
$$

The value of k for $P 1$ can be obtained by introducing the moments of the theoretical distribution of the E 's for the acentric case in equation (23) $\left(\left\langle E^{3}\right\rangle=1.329,\left\langle E^{2}\right\rangle=1\right.$ by definition and $\left.\langle E\rangle=0.886\right)$. For $P \overline{1}$ the moments for the centric case should be used $\left(\left\langle E^{3}\right\rangle=1.596,\left\langle E^{2}\right\rangle=1\right.$ and $\langle E\rangle=0.798$). The resulting k values are 2.06 for $P 1$ and 2.20 for $P \overline{1}$.

The author thanks the Spanish Ministerio de Ciencia e Innovación Tecnológica (Projects MAT2009-07967, Consolider NANOSELECT CSD2007-00041) and the Generalitat de Catalunya (SGR2009) for financial support.

References

Rius, J. (1993). Acta Cryst. A49, 406-409.
Rius, J. (2012). Acta Cryst. A68, 77-81.
Rius, J., Crespi, A. \& Torrelles, X. (2007). Acta Cryst. A63, 131-134.

