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Two phasing equations based on the Fourier syntheses �P = T�1[(E2
�

hE2
i)exp(i’)] and �M = T�1[(E � hEi)exp(i’)] were recently described [Rius

(2012). Acta Cryst. A68, 77–81] (E is the quasi-normalized structure factor and

hEi is the average over all reflections). These equations were found by

comparison with the direct methods origin-free modulus sum function and

constitute the core of the ‘� recycling’ phasing procedure. The derivation of

these phasing equations from the minimization of a residual (RP) between two

differently calculated density functions (one of them including the positivity

constraint) is shown.

1. Introduction

In Rius (2012), an alternative expression for calculating the � density

function in terms of the set of phases � = { . . . , ’H, . . . } of the quasi-

normalized structure factors (E) was described. For an equal-atom

structure, � in terms of � is normally computed with the Fourier

synthesis

� r;�ð Þ ¼
1

V

X
H

EH exp i’Hð Þ exp �i2�Hrð Þ: ð1Þ

The alternative expression, based on the �P function,

�P r;�ð Þ ¼
1

V

X
H

E2
H � E2

� �� �
exp i’Hð Þ exp �i2�Hrð Þ ð2Þ

is defined by

�P r;�ð Þ ¼
�P r;�ð Þ

Eh i
m r;�ð Þ; ð3Þ

where m is a mask which is equal to zero in the whole unit cell except

for those r points for which �P(r) � � = t�(�P), where m is equal to

one (t � 2.5). An important fact is that the standard deviation �(�P)

used for fixing the � threshold limit is phase independent, i.e. it only

depends on the structure-factor moduli derived from experiment.

Multiplication by m ensures that �P is positive definite. By making

�P,� = �Pm, the recursive phasing formula

’new
H ¼ phase of

R
V

�P;� r;�ð Þ exp i2�Hrð Þ dV

� �
ð4Þ

was also established by comparison with the direct methods origin-

free modulus sum function (Rius, 1993; Rius et al., 2007). The purpose

of this contribution is to derive the �P phasing formula [equation (4)]

from the minimization of the RP residual [equation (6)]. In this

derivation the existing proportionality between �P and �M shown in

Appendix A is used, �M = T�1[(E � hEi)exp(i’)].

2. The RP residual and the dP (dM) phasing formula

If �(r) represents a positive definite density function of the crystal,

e.g. the electron density or even the electrostatic potential (for

structure-determination purposes), let us assume that the condition

� r;�ð Þ ¼ �P r;�ð Þ ¼ � rð Þ; 8r 2 V ð5Þ

is only fulfilled for the true �’s. The discrepancy between �(�) and

�P(�) can be measured through the residual

RP �ð Þ ¼
R
V

� r;�ð Þ � �P r;�ð Þ
� 	2

dr ð6Þ

extended over the whole unit cell of V volume. To find the set of

phases minimizing RP, the above integral must be simplified. By

omitting the r and � symbols in the integrand, it follows

RP �ð Þ ¼

Z
V

�� �Pð Þ
2 dV ¼

Z
V

��
�Pm

Eh i


 �2

dV

¼

Z
V

�2 dV �
1

Eh i2

Z
V

2� Eh i�Pm� �2
Pm2

� �
dV ¼ IC � IP:

ð7Þ

Integral IC corresponds to the value of the Patterson function at the

origin, i.e. it is equal to 1/V
P

H EH
2 and hence is phase independent.

In integral IP, the squared mask m2 (which is made of zeros and ones)

is equal to m. In view of this property and after replacing �Pm by �P,�,

integral IP becomes

IP ¼
1

Eh i2

Z
V

2 Eh i�� �Pð Þ�P;� dV: ð8Þ

The physical meaning of the quantity inside the parentheses can best

be understood by taking into account equation (19), �P = k�M, and by

considering the definition of �M, i.e. �M = � � hEi�’. The quantity

inside the parentheses then becomes
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2 Eh i�� �P ¼ 2 Eh i�� k�M

¼ k Eh i�’ � 1�
2 Eh i

k


 �
�

� 

¼ k�X ð9Þ

where �X (like � and the phase synthesis �’) is a density function with

the strongest peaks at the atomic positions. The Fourier coefficients

of �X are given by

XH ¼ Eh i � 1�
2 Eh i

k


 �
EH

� 
exp i’H: ð10Þ

Replacement of (2hEi� � �P) by k�X in equation (8) yields

IP ¼
k

Eh i2

Z
V

�X�P;� dV: ð11Þ

By introducing �X in the form of a Fourier synthesis in equation (11),

IP �ð Þ ¼
k

Eh i2V

X
H

�
X�H exp i’�Hð Þ

Z
V

�P;� r;�ð Þ

� exp i2�Hrð Þ dr


: ð12Þ

Subsequent substitution of the complex integral (i.e. the H Fourier

transform of �P,�) by AH + iBH, under consideration that in the sum

there is a �H reflection for each H one (both with opposite phase

values), leads to

IP �ð Þ ¼
2k

Eh i2V

X0
H

XH cos ’HAH �ð Þ þ sin ’HBH �ð Þ
� 	

ð13Þ

where the prime above the summation symbol indicates that the sum

only extends over one hemisphere of reciprocal space.

The necessary condition for an extremum of RP is

@RP

�
@’H ¼ 0 ð14Þ

for every H. Since RP = IC� IP, and IC is phase independent, equation

(14) is equivalent to

@IP

@’H

¼
2kXH

Eh i2V
� sin’HAH �ð Þ þ cos ’HBH �ð Þ
� 	

¼ 0: ð15Þ

Finally, this may be rearranged to give the �P phasing formula of RP

tan ’new
H ¼

BH �ð Þ

AH �ð Þ
; ð16Þ

which corresponds to equation (4) but is now expressed as a tangent

formula. Closely related to this tangent formula is the �M phasing

formula

’new
H ¼ phase of

Z
V

�M;� r;�ð Þ exp i2�Hrð Þ dV

8<
:

9=
;; ð17Þ

which results from replacing �P,� by k�M,� in equation (11) and then

by proceeding in parallel to the �P case.

The linear dependence of X upon E is plotted for P1 and P�11 in Fig.

1. For both, the presence of X causes a decrease in the relative weight

of the strong reflections in integral IP. For the P1 case, the negative

slope is low. For P�11, the negative slope is higher but here the

proportion of weak E values is also much higher than for P1.

APPENDIX A
Relationship between dP and dM

It is known that the modulus function M is a Patterson-type function.

The principal difference between M and the Patterson function P lies

in the relative heights between the origin and non-origin peaks. If the

respective origin peaks are removed, the resulting M0 and P0 functions

will be essentially proportional, i.e. P0 = kM0. Since �P is defined by

�PðrÞ ¼
R
V

�’ðuÞP
0ðr� uÞ du; ð18Þ

substitution of P0 by kM0 in this integral leads to

�P ¼ k�M; ð19Þ

i.e. �P and �M are also proportional. The best k value should corre-

spond to the minimum of

R kð Þ ¼ V
R
V

P0 � kM0ð Þ
2

dV ð20Þ

which, by applying the Fourier theory, is equivalent to

R kð Þ ¼
P
H

E2
H � E2

� �� �
� k EH � Eh ið Þ

� 	2
: ð21Þ

It is straightforward to show that the least-squares estimate of k is

k ¼

P
H E2

H � E2
� �� �

EH � Eh ið ÞP
H EH � Eh ið Þ

2
ð22Þ

and, after some algebraic manipulation, it simplifies to

k ¼
E3
� �
� Eh i E2

� �
E2h i � Eh i2

: ð23Þ

The value of k for P1 can be obtained by introducing the moments of

the theoretical distribution of the E’s for the acentric case in equation

(23) (hE3
i = 1.329, hE2

i = 1 by definition and hEi = 0.886). For P�11 the

moments for the centric case should be used (hE3
i = 1.596, hE2

i = 1

and hEi = 0.798). The resulting k values are 2.06 for P1 and 2.20 for

P�11.
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Figure 1
Plot of the linear dependence of X upon E for P1 (upper line) and P�11 (lower line).
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